Краткое содержание страницы № 1
White Paper
Consolidation of a Performance-
Intel® Xeon® Processor
7400-based Server
Sensitive Application: Virtualizing
Electronic Sports League’s
Gaming Infrastructure
Abstract
An end-user case study with Electronic Sports League (ESL) using VMware ESX 3.5U1*
with NetQueue feature running on Intel® Xeon® processor 7400 series-based servers with
Intel® NICs supporting VMDq feature. Game servers are mission-critical, single-threaded,
processor-intensive, and network-latency sensitive. Th
Краткое содержание страницы № 2
White Paper Consolidation of a Performance-Sensitive Application Table of Contents Introduction – Can We Virtualize Everything? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 “Non-virtualizable” applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . Sidebar: ESL .
Краткое содержание страницы № 3
White Paper Consolidation of a Performance-Sensitive Application Introduction — Can We ESL Virtualize Everything? Electronic Sports League (ESL) is the largest online gaming community in Europe, with more than 844,000 active Virtualization of enterprise data center applications using hyper- users as of August 12, 2008. visors or VMMs is taking a predictable path. It started with the consolidation of the simplest, least performance-sensitive, and ESL has deployed thousands of game serve
Краткое содержание страницы № 4
4 sockets with 6 cores Intel Xeon Intel Xeon 4x 7400 Series 1066 Intel Xeon Intel Xeon Intel Xeon processor 7300 series ESB2 I/O Bridge Configurable PCI Express* White Paper Consolidation of a Performance-Sensitive Application Problem statement ESL’s perception, along with that of many of its peers in the gaming industry, was that gaming servers “can’t be virtualized” due to their mission-critical nature, high CPU utilization, and the critical focus of their user base on the in-game tran
Краткое содержание страницы № 5
VM VM VM n 1 2 Virtualization Hypervisor NIC White Paper Consolidation of a Performance-Sensitive Application Virtual Virtual Virtual 10.0 8.0 Unused I/O capacity 6.0 4.0 4.0 2.0 without VMDq LAN Result: NIC performance can be up to ~60% underutilized Figure 3 . Network data flow for virtualization without the use of Figure 4 . Impact of virtualization on a 10 GB Ethernet NIC VMDq and NetQueue technologies . without the use of VMDq and NetQueue . of virtualization in the Intel lab using
Краткое содержание страницы № 6
VM VM VM 1 2 n VMware with NetQueue NIC with VMDq White Paper Consolidation of a Performance-Sensitive Application Virtual Virtual Virtual 10.0 9.5 9.2 8.0 6.0 Without VMDq With VMDq 4.0 With VMDq 4.0 Jumbo Frames 2.0 LAN • 2x throughput • Near Native 10 GbE Figure 5 . Network data flow for virtualization Figure 6 . Tests measure wire speed Receive (Rx) side performance with VMDq and NetQueue . with VMDq on Intel® 82598 10 Gigabit Ethernet Controllers . VMM overhead can be directly routed
Краткое содержание страницы № 7
Counter- Counter- Strike 1.6* Strike 1.6* Windows Windows Server 2003* Server 2003* 32 bit 32 bit VM1 VMn White Paper Consolidation of a Performance-Sensitive Application 25 20 15 10 5 VMware ESX 3.5 U1* Best LAN Best Typical Intel® Xeon® Processor 7400 Series-based Server Internet Internet Figure 7 . Software stack . Figure 8 . In-game latency . Software stack Question the Assumptions Figure 7 shows the software stack used in the PoC. We started with VMware ESX 3.5U1, which was the late
Краткое содержание страницы № 8
Client 1 Client 8 White Paper Consolidation of a Performance-Sensitive Application 1 GbE 40–200 bytes UDP 10 GbE Native Force 10 S50* Game Player Game Server Server 2,000 bytes UDP 1 GbE Figure 9 . Game network protocol overview . Figure 10 . Native lab test setup . Gaming protocol Round-trip network latency tests How does this gaming protocol work? A player sends a UDP In order to run the round-trip network latency test, we used the packet of 40–200 bytes in size to the game server. The g
Краткое содержание страницы № 9
Client 1 VM1 vSW1 VM8 Client 8 White Paper Consolidation of a Performance-Sensitive Application 0.30 0.25 0.20 0.15 0.10 ESX* Server 1 GbE 0.05 10 GbE Force 10 S50* 64 256 1024 Packet size (bytes) 1 GbE Native VMDq No VMDq Figure 11 . Virtualized lab test setup . Figure 12 . Netperf 2 .4 .4 UDP latency test with eight parallel streams . Scenarios 2 and 3: Virtualized with The results from these tests are summarized in Figure 12. In and without VMDq/NetQueue the graph, we are comparing n
Краткое содержание страницы № 10
VM1 VMn Svc Cons vSwitch 1 vSwitch 0 Force 10 S50N Counter- Counter- ESL Network Strike 1.6* Strike 1.6* Windows Windows Server 2003* Server 2003* 32 bit 32 bit VMn VM1 White Paper Consolidation of a Performance-Sensitive Application 10 GbE VMDq 1 GbE Firewall VMware ESX 3.5 U1* Internet Intel® Xeon® Processor 7400 Series-based Server Figure 13 . Live Internet test setup . Figure 14 . Test software stack . 2 GB memory, Windows 2003 server (32 bit) and Counter-Strike ESL game testing 1
Краткое содержание страницы № 11
White Paper Consolidation of a Performance-Sensitive Application 100 740 720 80 700 60 680 40 660 20 640 24 32 36 40 Number of VMs Figure 15 . ESL virtual game servers on Intel® Xeon® processor 7400 Series-based platforms . latency or gaming experience. But in ESL’s current native envi- ROI Delivered ronment, ESL tries to limit the CPU utilization per server around 60–80 percent. ESL needs this head room as there can be situa- Server consolidation tions where some game servers need more r
Краткое содержание страницы № 12
White Paper Consolidation of a Performance-Sensitive Application Table 1 . ESL standard native hardware deployment metrics (“Before”) vs . virtualized deployment Proof-of-Concept metrics as described in this paper (“After”) . Before After Server 1P Intel® Core™2 Duo processor 4P Intel® Xeon® processor 7400 Cores 2 24 Game server processes 3 per CPU core 3 per VM; 4.5 per CPU core VMs per box N/A 36 Game server per box 6 108 Total users per box 72 1,296 CPU utilization 60-80% 75% Power uti
Краткое содержание страницы № 13
White Paper Consolidation of a Performance-Sensitive Application Conclusions We have shown that ESL’s mission-critical, processor-intensive, “T he new Six-Core Intel Xeon 7400 processor series network latency-sensitive game servers can be very effectively (“Dunnington”) was completely overwhelming in virtualized using the latest technologies. We achieved 18:1 all terms . The Intel Xeon MP servers with Intel consolidation ratios and saved almost 90 percent on power VMDq technology en
Краткое содержание страницы № 14
White Paper Consolidation of a Performance-Sensitive Application Resources Additional sources of information on this topic Intel Virtualization Developer Community: www.microsoft.com/windowsserver/compare/compare-windows-to-unix.mspx Intel Virtualization Developer Community: softwarecommunity.intel.com/articles/eng/1424.htm Intel Virtualization Technology: www.intel.com/technology/virtualization/index.htm Intel Xeon processor 7400 series: www.intel.com/performance/server/xeon_mp/virt
Краткое содержание страницы № 15
Краткое содержание страницы № 16
We want to hear from you Join the conversation on Intel’s Open Port: The Server Room • Bring your questions to the “Ask an Expert” discussion forum • Share best practices with IT influencers • Engage with Intel on your Datacenter challenges P e r fo r ma n c e t e s t s a nd r a t i n gs a re m ea s u re d u s i ng s p ec i fi c c o mpu t e r s y s t e ms a nd / o r c o mp o n e n t s a nd re fl ec t t he a ppr o x i ma t e p e r fo r ma n c e o f I n t e