Cypress CY7C1429BV18 user manual

User manual for the device Cypress CY7C1429BV18

Device: Cypress CY7C1429BV18
Category: Computer Hardware
Manufacturer: Cypress
Size: 0.72 MB
Added : 4/30/2014
Number of pages: 30
Print the manual

Download

How to use this site?

Our goal is to provide you with a quick access to the content of the user manual for Cypress CY7C1429BV18. Using the online preview, you can quickly view the contents and go to the page where you will find the solution to your problem with Cypress CY7C1429BV18.

For your convenience

If looking through the Cypress CY7C1429BV18 user manual directly on this website is not convenient for you, there are two possible solutions:

  • Full Screen Viewing - to easily view the user manual (without downloading it to your computer), you can use full-screen viewing mode. To start viewing the user manual Cypress CY7C1429BV18 on full screen, use the button Fullscreen.
  • Downloading to your computer - You can also download the user manual Cypress CY7C1429BV18 to your computer and keep it in your files. However, if you do not want to take up too much of your disk space, you can always download it in the future from ManualsBase.
Cypress CY7C1429BV18 User manual - Online PDF
Advertisement
« Page 1 of 30 »
Advertisement
Print version

Many people prefer to read the documents not on the screen, but in the printed version. The option to print the manual has also been provided, and you can use it by clicking the link above - Print the manual. You do not have to print the entire manual Cypress CY7C1429BV18 but the selected pages only. paper.

Summaries

Below you will find previews of the content of the user manuals presented on the following pages to Cypress CY7C1429BV18. If you want to quickly view the content of pages found on the following pages of the manual, you can use them.

Abstracts of contents
Summary of the content on the page No. 1

CY7C1422BV18, CY7C1429BV18
CY7C1423BV18, CY7C1424BV18
36-Mbit DDR-II SIO SRAM 2-Word
Burst Architecture
Features Functional Description
■ 36-Mbit density (4M x 8, 4M x 9, 2M x 18, 1M x 36) The CY7C1422BV18, CY7C1429BV18, CY7C1423BV18, and
CY7C1424BV18 are 1.8V Synchronous Pipelined SRAMs,
■ 300 MHz clock for high bandwidth
equipped with Double Data Rate Separate IO (DDR-II SIO)
■ 2-word burst for reducing address bus frequency
architecture. The DDR-II SIO consists of two separate ports: the
rea

Summary of the content on the page No. 2

2M x 8 Array 2M x 9 Array 2M x 8 Array 2M x 9 Array CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Logic Block Diagram (CY7C1422BV18) 8 D [7:0] Write Write Data Reg Data Reg 21 Address A (20:0) Register LD K Control R/W CLK Logic K Gen. C DOFF Read Data Reg. C CQ 16 R/W 8 CQ Reg. Reg. V 8 REF Control 8 Logic LD 8 Reg. Q 8 [7:0] NWS [1:0] Logic Block Diagram (CY7C1429BV18) 9 D [8:0] Write Write Data Reg Data Reg 21 Address A (20:0) Register LD K Control R/W CLK Logic K Gen. C DOFF Read Dat

Summary of the content on the page No. 3

1M x 18 Array 512K x 36 Array 1M x 18 Array 512K x 36 Array CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Logic Block Diagram (CY7C1423BV18) 18 D [17:0] Write Write Data Reg Data Reg 20 Address A (19:0) Register LD K Control R/W CLK Logic K Gen. C DOFF Read Data Reg. C CQ 36 R/W 18 CQ Reg. Reg. V 18 REF Control Logic 18 LD Reg. 18 Q 18 [17:0] BWS [1:0] Logic Block Diagram (CY7C1424BV18) 36 D [35:0] Write Write Data Reg Data Reg 19 Address A (18:0) Register LD K Control R/W CLK Logic K Ge

Summary of the content on the page No. 4

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Pin Configuration [1] The pin configuration for CY7C1422BV18, CY7C1429BV18, CY7C1423BV18, and CY7C1424BV18 follow. 165-Ball FBGA (15 x 17 x 1.4 mm) Pinout CY7C1422BV18 (4M x 8) 1 2 3 4 5 6 7 8 9 10 11 A CQ NC/72M A R/W NWS K NC/144M LD AA CQ 1 B NC NC NC A NC/288M K NWS ANC NC Q3 0 C NC NC NC V AAA V NC NC D3 SS SS D NC D4 NC V V V V V NC NC NC SS SS SS SS SS E NC NC Q4 V V V V V NC D2 Q2 DDQ SS SS SS DDQ F NC NC NC V V V V V NC NC NC DDQ D

Summary of the content on the page No. 5

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Pin Configuration (continued) [1] The pin configuration for CY7C1422BV18, CY7C1429BV18, CY7C1423BV18, and CY7C1424BV18 follow. 165-Ball FBGA (15 x 17 x 1.4 mm) Pinout CY7C1423BV18 (2M x 18) 1 2 3 4 5 6 7 8 9 10 11 A CQ NC/144M A R/W BWS K NC/288M LD A NC/72M CQ 1 B NC Q9 D9 A NC K BWS ANC NC Q8 0 C NC NC D10 V AAA V NC Q7 D8 SS SS D NC D11 Q10 V V V V V NC NC D7 SS SS SS SS SS E NC NC Q11 V V V V V NC D6 Q6 DDQ SS SS SS DDQ F NC Q12 D12 V V

Summary of the content on the page No. 6

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Pin Definitions Pin Name IO Pin Description D Input- Data Input Signals. Sampled on the rising edge of K and K clocks during valid write operations. [x:0] CY7C1422BV18 - D Synchronous [7:0] CY7C1429BV18 - D [8:0] CY7C1423BV18 - D [17:0] CY7C1424BV18 - D [35:0] LD Input- Synchronous Load. This input is brought LOW when a bus cycle sequence is defined. This definition Synchronous includes address and read/write direction. All transactions op

Summary of the content on the page No. 7

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Pin Definitions (continued) Pin Name IO Pin Description CQ Echo Clock CQ Referenced with Respect to C. This is a free-running clock and is synchronized to the input clock for output data (C) of the DDR-II. In the single clock mode, CQ is generated with respect to K. The timings for the echo clocks is shown in the Switching Characteristics on page 23. CQ Echo Clock CQ Referenced with Respect to C. This is a free-running clock and is synchro

Summary of the content on the page No. 8

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 are then written into the memory array at the specified location. Functional Overview Write accesses can be initiated on every rising edge of the positive input clock (K). This pipelines the data flow such that 18 The CY7C1422BV18, CY7C1429BV18, CY7C1423BV18, and bits of data can be transferred into the device on every rising CY7C1424BV18 are synchronous pipelined Burst SRAMs edge of the input clocks (K and K). equipped with a DDR-II Seperat

Summary of the content on the page No. 9

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Echo Clocks DLL Echo clocks are provided on the DDR-II to simplify data capture These chips use a Delay Lock Loop (DLL) that is designed to on high-speed systems. Two echo clocks are generated by the function between 120 MHz and the specified maximum clock DDR-II. CQ is referenced with respect to C and CQ is referenced frequency. During power up, when the DOFF is tied HIGH, the with respect to C. These are free-running clocks and are DLL is l

Summary of the content on the page No. 10

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Truth Table [2, 3, 4, 5, 6, 7] The truth table for CY7C1422BV18, CY7C1429BV18, CY7C1423BV18, and CY7C1424BV18 follows. Operation K LD R/W DQ DQ L-H L L D(A + 0) at K(t + 1)↑ D(A + 1) at K(t + 1)↑ Write Cycle: Load address; wait one cycle; input write data on consecutive K and K rising edges. Read Cycle: L-H L H Q(A + 0) at C(t + 1)↑ Q(A + 1) at C(t + 2)↑ Load address; wait one and a half cycle; read data on consecutive C and C rising edges

Summary of the content on the page No. 11

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Write Cycle Descriptions [2, 8] The write cycle description table for CY7C1429BV18 follows. BWS K K Comments 0 L L–H – During the Data portion of a write sequence, the single byte (D ) is written into the device. [8:0] ) is written into the device. L – L–H During the Data portion of a write sequence, the single byte (D [8:0] H L–H – No data is written into the device during this portion of a write operation. H – L–H No data is written into t

Summary of the content on the page No. 12

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Instruction Register IEEE 1149.1 Serial Boundary Scan (JTAG) Three-bit instructions can be serially loaded into the instruction These SRAMs incorporate a serial boundary scan Test Access register. This register is loaded when it is placed between the TDI Port (TAP) in the FBGA package. This part is fully compliant with and TDO pins, as shown in TAP Controller Block Diagram on IEEE Standard #1149.1-2001. The TAP operates using JEDEC page 15. U

Summary of the content on the page No. 13

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 IDCODE BYPASS The IDCODE instruction loads a vendor-specific, 32-bit code into When the BYPASS instruction is loaded in the instruction register the instruction register. It also places the instruction register and the TAP is placed in a Shift-DR state, the bypass register is between the TDI and TDO pins and shifts the IDCODE out of the placed between the TDI and TDO pins. The advantage of the device when the TAP controller enters the Shift-D

Summary of the content on the page No. 14

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 TAP Controller State Diagram [9] The state diagram for the TAP controller follows. TEST-LOGIC 1 RESET 0 1 1 1 TEST-LOGIC/ SELECT SELECT 0 IDLE DR-SCAN IR-SCAN 0 0 1 1 CAPTURE-DR CAPTURE-IR 0 0 0 0 SHIFT-DR SHIFT-IR 1 1 1 1 EXIT1-DR EXIT1-IR 0 0 0 0 PAUSE-DR PAUSE-IR 1 1 0 0 EXIT2-DR EXIT2-IR 1 1 UPDATE-IR UPDATE-DR 1 1 0 0 Note 9. The 0/1 next to each state represents the value at TMS at the rising edge of TCK. Document #: 001-07035 Rev. *D

Summary of the content on the page No. 15

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 TAP Controller Block Diagram 0 Bypass Register 2 1 0 Selection Selection TDI TDO Instruction Register Circuitry Circuitry 31 30 29 . . 2 1 0 Identification Register . 108 . . . 2 1 0 Boundary Scan Register TCK TAP Controller TMS TAP Electrical Characteristics [10, 11, 12] Over the Operating Range Parameter Description Test Conditions Min Max Unit V Output HIGH Voltage I = −2.0 mA 1.4 V OH1 OH Output HIGH Voltage I = −100 μA1.6 V V OH2 OH

Summary of the content on the page No. 16

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 TAP AC Switching Characteristics [13, 14] Over the Operating Range Parameter Description Min Max Unit t TCK Clock Cycle Time 50 ns TCYC t TCK Clock Frequency 20 MHz TF t TCK Clock HIGH 20 ns TH t TCK Clock LOW 20 ns TL Setup Times t TMS Setup to TCK Clock Rise 5 ns TMSS t TDI Setup to TCK Clock Rise 5 ns TDIS t Capture Setup to TCK Rise 5 ns CS Hold Times t TMS Hold after TCK Clock Rise 5 ns TMSH t TDI Hold after Clock Rise 5 ns TDIH t Capt

Summary of the content on the page No. 17

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Identification Register Definitions Value Instruction Field Description CY7C1422BV18 CY7C1429BV18 CY7C1423BV18 CY7C1424BV18 Revision Number 000 000 000 000 Version number. (31:29) Cypress Device ID 11010100010000111 11010100010001111 11010100010010111 11010100010100111 Defines the type of (28:12) SRAM. Cypress JEDEC ID 00000110100 00000110100 00000110100 00000110100 Allows unique (11:1) identification of SRAM vendor. ID Register 1111 Indi

Summary of the content on the page No. 18

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Boundary Scan Order Bit # Bump ID Bit # Bump ID Bit # Bump ID Bit # Bump ID 0 6R 28 10G 56 6A 84 1J 1 6P29 9G 57 5B85 2J 2 6N 30 11F 58 5A 86 3K 3 7P 31 11G 59 4A 87 3J 4 7N32 9F 60 5C88 2K 5 7R 33 10F 61 4B 89 1K 6 8R 34 11E 62 3A 90 2L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M 43

Summary of the content on the page No. 19

~ ~ CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 DLL Constraints Power Up Sequence in DDR-II SRAM ■ DLL uses K clock as its synchronizing input. The input must DDR-II SRAMs must be powered up and initialized in a have low phase jitter, which is specified as t . KC Var predefined manner to prevent undefined operations. ■ The DLL functions at frequencies down to 120 MHz. Power Up Sequence ■ If the input clock is unstable and the DLL is enabled, then the ■ Apply power and drive DOFF eith

Summary of the content on the page No. 20

CY7C1422BV18, CY7C1429BV18 CY7C1423BV18, CY7C1424BV18 Current into Outputs (LOW) ........................................ 20 mA Maximum Ratings Static Discharge Voltage (MIL-STD-883, M. 3015).. > 2001V Exceeding maximum ratings may impair the useful life of the Latch-up Current ................................................... > 200 mA device. These user guidelines are not tested. Storage Temperature ................................. –65°C to +150°C Operating Range Ambient Temperature with Pow


Alternative user manuals
# User manual Category Download
1 Cypress 256K (32K x 8) CY62256 User manual Computer Hardware 0
2 Cypress 7C185-35 User manual Computer Hardware 0
3 Cypress 7C185-15 User manual Computer Hardware 0
4 Cypress 7C185-25 User manual Computer Hardware 0
5 Cypress AN20639 User manual Computer Hardware 0
6 Cypress 7C185-20 User manual Computer Hardware 0
7 Cypress AutoStore STK17TA8 User manual Computer Hardware 0
8 Cypress AutoStore STK17T88 User manual Computer Hardware 0
9 Cypress AN49947 User manual Computer Hardware 0
10 Cypress CapSense CY8C20396 User manual Computer Hardware 0
11 Cypress CapSense CY8C20x36 User manual Computer Hardware 0
12 Cypress AutoStore STK14CA8 User manual Computer Hardware 0
13 Cypress CY14B101LA User manual Computer Hardware 0
14 Cypress CY14B101L User manual Computer Hardware 0
15 Cypress CY14B101P User manual Computer Hardware 0
16 Sony MSAKIT-PC4A User manual Computer Hardware 2
17 Sony MRW62E-S1 2694866142 User manual Computer Hardware 5
18 Philips MATCH LINE 9596 User manual Computer Hardware 17
19 Sony 64GB SDHC Class 10 Memory Card Readers SF32UY User manual Computer Hardware 1
20 Philips PSC702 User manual Computer Hardware 1