Trane WSHP-DS-6 user manual

User manual for the device Trane WSHP-DS-6

Device: Trane WSHP-DS-6
Category: Heat Pump
Manufacturer: Trane
Size: 5.07 MB
Added : 3/21/2014
Number of pages: 18
Print the manual

Download

How to use this site?

Our goal is to provide you with a quick access to the content of the user manual for Trane WSHP-DS-6. Using the online preview, you can quickly view the contents and go to the page where you will find the solution to your problem with Trane WSHP-DS-6.

For your convenience

If looking through the Trane WSHP-DS-6 user manual directly on this website is not convenient for you, there are two possible solutions:

  • Full Screen Viewing - to easily view the user manual (without downloading it to your computer), you can use full-screen viewing mode. To start viewing the user manual Trane WSHP-DS-6 on full screen, use the button Fullscreen.
  • Downloading to your computer - You can also download the user manual Trane WSHP-DS-6 to your computer and keep it in your files. However, if you do not want to take up too much of your disk space, you can always download it in the future from ManualsBase.
Trane WSHP-DS-6 User manual - Online PDF
Advertisement
« Page 1 of 18 »
Advertisement
Print version

Many people prefer to read the documents not on the screen, but in the printed version. The option to print the manual has also been provided, and you can use it by clicking the link above - Print the manual. You do not have to print the entire manual Trane WSHP-DS-6 but the selected pages only. paper.

Summaries

Below you will find previews of the content of the user manuals presented on the following pages to Trane WSHP-DS-6. If you want to quickly view the content of pages found on the following pages of the manual, you can use them.

Abstracts of contents
Summary of the content on the page No. 1

WSHP-DS-6
March 2000
Water Source
Heat Pump
Water-to-Water
Model WPWD
WSHP-DS-6

Summary of the content on the page No. 2

Introduction The WPWD product is a heating In the heating mode, the water-to- and cooling hydronic fluid water-to- water unit efficiently extracts heat water heat pump capable of pro- from a water source (source side) ducing water temperature up to such as a well, lake, boiler/tower loop or closed ground loop heat-ex- 130 F or temperatures down to changer, then transfers the heat to 25 F. This extended operating another flow of water (load side). range offers great opportunities in The am

Summary of the content on the page No. 3

Table of Contents Introduction 2 Features and Benefits 4 Model Number Description 7 General Data 8 Application Considerations 9 Electrical Data 18 Performance Data 19 Dimensional Data 25 Wiring Diagram 28 Accessory Options 30 Mechanical Specifications 31 3

Summary of the content on the page No. 4

Features General and Benefits WPWD cabinet includes full length General channel stiffeners underneath the unit. The water source heat pump model WPWD (water-to-water) offers a Heat Exchanger range of capacities from 2 tons to 6 The water to refrigerant heat ex- tons. All units are housed in one changers are made of stainless standard compact cabinet. steel brazed plate. This design pro- Cabinet vides a larger amount of surface area for heat exchange between The cabinet, which allows ea

Summary of the content on the page No. 5

Features Controls and Benefits 24 Volt Controls All electrical controls and safety de- 50 VA Transformer Lockout vices are factory wired, tested, and 24 VAC Contactor Relay mounted in the unit. The control package includes: Ground  Compressor contactor  24 Volt transformer  Lockout relay  Compressor run capacitor (1- Compressor phase units only) Run Capacitor  Reversing valve coil (For heat Low Voltage pump only) High Voltage 2 Amp Fuse  Fuse (for desuperheater) 10 Pole Terminal (for use

Summary of the content on the page No. 6

Features Heat and Recovery Benefits The unit employs a circulating pump Desuperheater Option to move water through a double wall The desuperheater option is a heat heat exchanger. It then returns the recovery system packaged within heated water to the water tank. This the water-to-water unit. This option water is heated by superheated re- captures heat energy from the heat frigerant discharge gas from the pump for considerable cost savings compressor. This heat energy can all year. Si

Summary of the content on the page No. 7

Model Number Description 1 5 10 15 Digit 11: Freeze Protection Digits 1 & 2: Product Type (source side) WP = Trane Commercial Water 1 = Brazed Plate Heat Exchanger Source Heat Pump with 35 F (1.67 C) Freezestat 2 = Brazed Plate Heat Exchanger Digit 3: Product Configuration with 20 F (-6.67 C) Freezestat W = Water-to-Water Digit 4: Development Sequence D Digit 12: Freeze Protection (load side) 1 = Brazed Plate Heat Exchanger Digits 5-7: Unit Nominal Capacity with 35 F (1.67 C) Freezestat 024 = 24

Summary of the content on the page No. 8

General Data Table G-1: Physical Data (English) Model: WPWD 024 036 042 048 060 072 Width of cabinet (in) 23 23 23 23 23 23 Width of cabinet and connections (in) 24.8 24.8 24.8 24.8 24.8 24.8 Unit Size Height (in) 24.3 24.3 24.3 24.3 24.3 24.3 Depth (in) 23.3 23.3 23.3 23.3 23.3 23.3 Compressor Type Scroll Scroll Scroll Scroll Scroll Scroll R-22 Refrigerant (lbs) 3.25 3.375 3.50 4.00 4.25 4.25 Approximate Weight With crate (lbs) 163 183 203 214 244 277 (lbs) Table G-2: Specifications (English)

Summary of the content on the page No. 9

Application Considerations Closed Loop System Closed loop systems (both ground source and surface water) provide heat rejection and heat addition to maintain proper water source temperatures. Operating and maintenace cost are low because an auxillary fossil fuel boiler and cooling tower are not required to maintain the loop temperature. The technology has advanced to the point where many electric utilities and rural electric cooperatives are offering incentives for the installation of geothermal

Summary of the content on the page No. 10

Application Considerations Open Loop System Where an existing or proposed well can provide an ample supply of suitable quality water, ground water systems may be very efficient. (See Figure 7) Operation and benefits are similar to those for closed loop systems. There are however several considerations that should be addressed prior to installation.  An acceptable way to discharge the significant volume of used water from the heat pump should be defined. It may be necessary to install a recha

Summary of the content on the page No. 11

Application Source Side Considerations vs. Load Side source side heat exchanger to the Source vs. Load load side heat exchanger. The model WPWD water-to-water The “load side” heat exchanger system contains two water to refrig- takes the place of a DX (direct ex- erant heat exchangers. The two pansion) air coil. It provides treated heat exchangers enable the system fluid (hot or cold) to a mechanical to be divided into a source and load device. These mechanical devices separation. includ

Summary of the content on the page No. 12

Application Closed Loop Considerations Geothermal Hydronic Ice Melting Via a Water-to-Water Unit Geothermal Space Temperature Heating / Cooling Refrigeration Equipment (Closed) Ground Loop Heat Exchanger Cold climates may take an even Geothermal Typical Benefits greater advantage of the heat Integrated System  Annual energy savings means rejected by the stores refrigeration The Trane ground source heat lower operational costs equipment and space conditioning pump is highly efficient in service

Summary of the content on the page No. 13

Application Fresh Air Considerations Ventilation Water-Out Fresh Air Ventilation (source) with Water-to-Water Units Water-Out Water-In (load) (source) Water-In Exhaust (load) Air Fresh Air Geothermal Space Heating and Cooling (Closed) Ground Loop Heat Exchanger Water-to-Water and Fresh Air Ventilation Geothermal energy systems take the makeup air unit hydronic coil to advantage of the fact that heat the makeup air to maintain subsurface earth temperatures are building requirements. This co

Summary of the content on the page No. 14

Application Fresh Air Considerations Ventilation Mechanical EXHAUST OUTSIDE AIR AIR HOT WATER COIL AIR HANDLER AIR HANDLER EXP TANK AUTOMATIC AIR VENT HAND PUMP WPWD DRAIN VA PRESSURE WPWD RELIEF VA WPWD WPWD BALL VA SUPPLY RETURN 14 EXHAUST AIR FROM TOILET RMS EXHAUST AIR TO HEAT PUMPS

Summary of the content on the page No. 15

Application Central Considerations Pumping System 6 7 1 5 2 4 3 Figure 10: Central pumping system installation minal devices with 45 F or General Central Pump 120 F fluid. Application A central pumping system involves  The sound attenuation pad should be slightly oversized for a single pump design usually locat-  Ball valves should be installed unit. This field supplied product ed within a basement or mechanical in the supply and return lines is recommended for sound for unit isolatio

Summary of the content on the page No. 16

Application Well Water Considerations Systems 7 6 5 9 8 1 3 2 4 Figure 11: Well water installation  The sound attenuation pad Well Water General should be slightly oversized for Application the unit. This field supplied A well water application involves an product is recommended for  Ball valves should be installed open loop water supply. The water sound absorption of unit. in the supply and return lines is drawn from an open well or pond  The low voltage control con- for unit iso

Summary of the content on the page No. 17

Application Distributed Considerations Pumping System 8 7 6 1 5 2 4 3 Figure 12: Distibuted pumping installation  The sound attenuation pad General Earth Coupled should be slightly oversized for Application the unit. This field supplied A distributed pumping system con- product is recommended for tains either a single or dual pump  Ball valves should be installed sound absorption of unit. module connected directly to the in the supply and return lines  The low voltage control con- fo

Summary of the content on the page No. 18

Electrical Data Table E-1: Electrical Data 024 036 042 048 060 072 Model: WPWD Voltage 208-230/60hz/1phase Compressor RLA 11.4 15 18.4 20.4 28 32.1 Compressor LRA 56 73 95 109 169 169 Minimum Circuit Ampacity 16 21 25.8 28.6 39 45 Max Fuse Size 25 30 40 45 60 70 Aux Pump Amps 2.5 2.5 2.5 2.5 2.5 2.5 Desuperheater Min Cir Ampacity 14.3 18.8 23 25.5 35 40.1 Desuperheater Pump RLA 0.4 0.4 0.4 0.4 0.4 0.4 Voltage 208-230/60hz/3phase Compressor RLA - 10.7 11.4 13.9 20 19.3 Compressor LRA - 63 77 88


Alternative user manuals
# User manual Category Download
1 Trane 22-5202-03-3605 User manual Heat Pump 0
2 Trane 2TWB0-UM-2 User manual Heat Pump 0
3 Trane 4TWX6 User manual Heat Pump 1
4 Trane 2TWB-SVU01A-EN User manual Heat Pump 1
5 Trane 4TWX6036B User manual Heat Pump 2
6 Trane 4TWX6048B User manual Heat Pump 1
7 Trane 4TWX606OB User manual Heat Pump 0
8 Trane 4TWX6024B User manual Heat Pump 0
9 Trane 4YCY4024A User manual Heat Pump 5
10 Trane 4YCY4060A User manual Heat Pump 0
11 Trane EXWA User manual Heat Pump 7
12 Trane GETB User manual Heat Pump 2
13 Trane GEH User manual Heat Pump 27
14 Trane GEV User manual Heat Pump 3
15 Trane GSWD User manual Heat Pump 0
16 Edelbrock 15005 User manual Heat Pump 0
17 A.O. Smith AH User manual Heat Pump 2
18 ACS 882.00217.00 User manual Heat Pump 1
19 A.O. Smith AHD 290 User manual Heat Pump 3
20 AC International SELF-PRIMING CENTRIFUGAL PUMPS User manual Heat Pump 5