Boca Research Muon Liquid Handling System None user manual

User manual for the device Boca Research Muon Liquid Handling System None

Device: Boca Research Muon Liquid Handling System None
Category: Heat Pump
Manufacturer: Boca Research
Size: 0.45 MB
Added : 5/22/2014
Number of pages: 14
Print the manual

Download

How to use this site?

Our goal is to provide you with a quick access to the content of the user manual for Boca Research Muon Liquid Handling System None. Using the online preview, you can quickly view the contents and go to the page where you will find the solution to your problem with Boca Research Muon Liquid Handling System None.

For your convenience

If looking through the Boca Research Muon Liquid Handling System None user manual directly on this website is not convenient for you, there are two possible solutions:

  • Full Screen Viewing - to easily view the user manual (without downloading it to your computer), you can use full-screen viewing mode. To start viewing the user manual Boca Research Muon Liquid Handling System None on full screen, use the button Fullscreen.
  • Downloading to your computer - You can also download the user manual Boca Research Muon Liquid Handling System None to your computer and keep it in your files. However, if you do not want to take up too much of your disk space, you can always download it in the future from ManualsBase.
Boca Research Muon Liquid Handling System None User manual - Online PDF
Advertisement
« Page 1 of 14 »
Advertisement
Print version

Many people prefer to read the documents not on the screen, but in the printed version. The option to print the manual has also been provided, and you can use it by clicking the link above - Print the manual. You do not have to print the entire manual Boca Research Muon Liquid Handling System None but the selected pages only. paper.

Summaries

Below you will find previews of the content of the user manuals presented on the following pages to Boca Research Muon Liquid Handling System None. If you want to quickly view the content of pages found on the following pages of the manual, you can use them.

Abstracts of contents
Summary of the content on the page No. 1



Muon Liquid Handling System
User Guide




C. Johnson, S.P. Cottrell et al
Version 0.2












- 1 -

Summary of the content on the page No. 2

Contents 1 Getting Started 3 1.1 Layout of the liquid handling system 3 1.2 Layout of the in situ sample stick 4 1.3 Layout of the pump 4 2 General procedures 6 2.1 Sample loading 6 2.1.1 Loading Vessel 1 6 2.1.2 Loading Vessel 2 6 2.2 Evacuation of the system 6 2.2.1 Removing air from Vessel 1 7 2.2.2 Removing air from Vessel 2 7 2.2.3 Removing air from Vessel 3 7 2.2.4 Evacuation of the sample cell 7

Summary of the content on the page No. 3

1 Getting Started This manual describes the liquid handling system and the in situ sample cell as used on the DEVA instrument with the “RF” spectrometer, for either normal muon spins relaxation or RF resonance experiments. 1.1 Layout of the liquid handling system The Muon Liquid Handling System has been designed to facilitate the in situ degassing and transfer of samples into and out of the sample cell. The main features of the liquid handling system are shown in Figure 1. Inl

Summary of the content on the page No. 4

1.2 Layout of the in situ sample stick The liquid sample stick is designed to fit into the DEVA flow cryostat, details of which can be found in the DEVA manual. It consists of a shapol target cell 30 mm x 30 mm with a mylar window upon which may be mounted an RF coil. Two stainless steel capillaries provide a means of flowing liquid into and out of the cell along with feed throughs for an RF excitation signal and a pick-up coil. Figure 2 The liquid-sample cell mounted on a sampl

Summary of the content on the page No. 5

Roughing/ Turbo Off/Run switch switch Pressure reading Turbo control panel Turbo Pump Rotary Pump Figure 2 The layout of the front panel on the vacuum pump used with the muon liquid handling system. - 5 -

Summary of the content on the page No. 6

2 General procedures 2.1 Sample loading At this point, the system will be open to the atmosphere, ensure that valve V2 is closed to prevent air condensation in the cold trap. 2.1.1 Loading Vessel 1 • Open the tap on the right-hand side of Vessel 1. • Open tap A and valve V11. • The liquid should be poured into the system very slowly to avoid liquid leaving the vessel via the side tap. • When loading is complete, close the side tap, tap A and valve V11. 2.1.2 Loading Vessel 2

Summary of the content on the page No. 7

2.2.1 Removing air from Vessel 1 Once the system has been pressurised, tap A on Vessel 1 can be opened. It is possible to bubbled helium gas through the sample liquid against the non-return valve, V13. If this is required, first ensure that valves V5, V7 and V8 are closed. Open valves V10 and V6, finally opening tap B slowly in order to regulate the flow. To fully evacuate the system and Vessel 1, the sample liquid must be frozen by raising a dewar of liquid nitrogen around it. Wh

Summary of the content on the page No. 8

2.3 Freeze-Pump-Thaw cycle Using this system it is possible to operate freeze-pump-thaw cycles on sample liquids held in any of the three vessels. Procedures appropriate to each vessel are outlined below. 2.3.1 Sample in Vessel 1 • All taps and valves should be closed. • Open valve V2 and tap A on Vessel 1, and freeze the sample liquid by slowly raising a dewar of liquid nitrogen around it. • When it has been determined that the liquid has completely frozen switch the pump to ro

Summary of the content on the page No. 9

2.3.3 Sample in Vessel 3 • All taps and valves should be closed. • Open valves V2 and V3 along with tap C on Vessel 3 and freeze the sample liquid by slowly raising a dewar of liquid nitrogen around it. • When it has been determined that the liquid has completely frozen switch the pump to roughing mode and open valve V1. • Switch the pump to turbo mode and leave for several minutes. The pressure within the system can be read from the baratron gauge on the pump. • When sufficient pump

Summary of the content on the page No. 10

2.4.2 Vessel 3 to sample cell The transfer of liquid from Vessel 3 to the sample cell is brought about by the difference in pressure between that in the Vessel and a vacuum in the cell. However, in order to control the transfer of liquid the pressure difference should be as small as possible but not so low that the liquid starts to boil. • Switch the pump to its roughing mode. • Open values V2 and V3 along with tap C and carefully open valve V1 until a suitable pressure is obtained (

Summary of the content on the page No. 11

2.4.4 Recovery of liquid in sample cell to Vessel 1 The liquid in the sample cell cannot be recovered to Vessel 1 using the liquid handling rig as presently configured. 2.4.5 Recovery of liquid in sample cell to Vessel 2 The liquid in the sample cell can be recovered to Vessel 2 using the following procedure. • Vessel 2 should be under vacuum along with the manifold between valves V5 and V6 prior to the recovery of the liquid from the sample cell. If it is not, switch the pump t

Summary of the content on the page No. 12

• All the liquid may not return in a single pass and repeating the evacuation procedure may be required. However, some liquid may be present in the system and care should be taken during evacuation that the trap does not become blocked. The liquid may also be encouraged to leave the sample cell by using a small amount of gas. • Close valve V3 and open valve V10 to allow helium gas into the lower part of the system. Close valve V10 and carefully open valve V5 to allow the gas to pass th

Summary of the content on the page No. 13

3 Example Experiment The paramagnetic signal in liquid n-hexane is difficult to observe because the muonium polarisation is found to decay on a microsecond time scale, which is further reduced by the presence of dissolved oxygen. A series of commissioning experiments were carried out using n-hexane in order to gauge the ability of the liquid handling rig to degas the liquid. This experiment was carried out using a detachable liquid-sample cell. At the start of the experiment, 100 m

Summary of the content on the page No. 14

13.5 13.0 a) b) 13.0 12.5 12.5 12.0 12.0 11.5 11.5 11.0 11.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Time (µs) Time (µs) c) 13.5 13.0 12.5 12.0 11.5 11.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Time (µs) Figure 1 Muonium precession signal at 2G in n-hexane after a) 4, b) 7 and c) 10 freeze- pump-thaw cycles. For the second experiment, all of the n-hexane used in the first experiment was recovered into a sample bottle and dried using a small piece of clean sodium. The liquid was c


Alternative user manuals
# User manual Category Download
1 Edelbrock 15005 User manual Heat Pump 0
2 A.O. Smith AH User manual Heat Pump 2
3 ACS 882.00217.00 User manual Heat Pump 1
4 A.O. Smith AHD 290 User manual Heat Pump 3
5 AC International SELF-PRIMING CENTRIFUGAL PUMPS User manual Heat Pump 5
6 Acnodes Q5RF SERIES User manual Heat Pump 2
7 Amana 10730418 User manual Heat Pump 1
8 Allied Air Enterprises (2 User manual Heat Pump 0
9 Allied Air Enterprises 15) User manual Heat Pump 0
10 Allied Air Enterprises 4HP16LT User manual Heat Pump 2
11 AC International 8200 Series User manual Heat Pump 1
12 American Standard TWE060B***E User manual Heat Pump 2
13 Allied Air Enterprises 4)PHP(13 User manual Heat Pump 1
14 American Standard TWE120A***F User manual Heat Pump 0
15 American Standard TWE090B***E User manual Heat Pump 0