Fujitsu BX600 SB9 user manual

User manual for the device Fujitsu BX600 SB9

Device: Fujitsu BX600 SB9
Category: Switch
Manufacturer: Fujitsu
Size: 1.73 MB
Added : 10/30/2014
Number of pages: 47
Print the manual

Download

How to use this site?

Our goal is to provide you with a quick access to the content of the user manual for Fujitsu BX600 SB9. Using the online preview, you can quickly view the contents and go to the page where you will find the solution to your problem with Fujitsu BX600 SB9.

For your convenience

If looking through the Fujitsu BX600 SB9 user manual directly on this website is not convenient for you, there are two possible solutions:

  • Full Screen Viewing - to easily view the user manual (without downloading it to your computer), you can use full-screen viewing mode. To start viewing the user manual Fujitsu BX600 SB9 on full screen, use the button Fullscreen.
  • Downloading to your computer - You can also download the user manual Fujitsu BX600 SB9 to your computer and keep it in your files. However, if you do not want to take up too much of your disk space, you can always download it in the future from ManualsBase.
Fujitsu BX600 SB9 User manual - Online PDF
Advertisement
« Page 1 of 47 »
Advertisement
Print version

Many people prefer to read the documents not on the screen, but in the printed version. The option to print the manual has also been provided, and you can use it by clicking the link above - Print the manual. You do not have to print the entire manual Fujitsu BX600 SB9 but the selected pages only. paper.

Summaries

Below you will find previews of the content of the user manuals presented on the following pages to Fujitsu BX600 SB9. If you want to quickly view the content of pages found on the following pages of the manual, you can use them.

Abstracts of contents
Summary of the content on the page No. 1



Issue 20th October 2006

Integration of BX600 SB9

Switches in Cisco Networks

Pages 47

Contents

1 Introduction 3
2 Switch Connectivity 4
2.1 Auto Negotiation 4
2.1.1 Introduction 4
2.1.2 Recommended Solution 4
2.1.3 Configuration 4
2.2 Port Aggregation 5
2.2.1 Introduction 5
2.2.2 Recommended Solution 5
2.2.3 Configuration 6
2.3 VLANs and Trunks 8
2.3.1 Introduction 8
2.3.2 Recommended Solution 8
2.3.3 Configuration 8
2.4 Spanning Tree Protocol 11

Summary of the content on the page No. 2

Whitepaper │ Issue: 20th October 2006│ PRIMERGY BX600 GbE Switch (six 1 Gbit, two 10 Gbit Ports) Layer 2/3/4 Switch Page 2 / 47 4.5.1 Introduction 46 4.5.2 Recommended Solution 46 4.5.3 Configuration of CDP 46 4.6 Port Monitoring 47 4.6.1 Introduction 47 4.6.2 Configuration of Port Monitoring 47 4.7 Further information in the Internet: 47

Summary of the content on the page No. 3

Whitepaper │ Issue: 20th October 2006│ PRIMERGY BX600 GbE Switch (six 1 Gbit, two 10 Gbit Ports) Layer 2/3/4 Switch Page 3 / 47 1 Introduction Today most datacenter networks run with switches from a single vendor. Although most of the protocols used are standardized, there are a number of proprietary ones – especially redundancy and management protocols. Other features may be so individual that interoperability is possible but not simple. It is therefore sometimes a challenge to integrate s

Summary of the content on the page No. 4

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 4 / 47 2 Switch Connectivity 2.1 Auto Negotiation 2.1.1 Introduction The SB9 is equipped with at least six Gigabit Ethernet ports which are implemented as specified in the 1000BaseT standard. (Since ten Gigabit Ethernet is not usual in datacenters’ server access layer, the 10GBaseCX4 and XFP interfaces that are also available are not covered here.) These ports can be run with different data rates

Summary of the content on the page No. 5

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 5 / 47 2.2 Port Aggregation 2.2.1 Introduction You will usually need more than 1 Gbit when connecting an SB9 switch in a datacenter. In this case two or more links are set up to form a port-channel, also known as a Fast Ethernet Channel (FEC) or Gigabit Ethernet Channel (GEC) in Cisco networks. Figure 1 shows a typical uplink configuration for an SB9: One port-channel connects to Cisco switch A and

Summary of the content on the page No. 6

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 6 / 47 2.2.3 Configuration The setup in Figure 1 would be configured in the following steps: • Step 1: Shut down the affected ports to avoid loops • Step 2: Set up the port-channel • Step 3: Bring up the affected ports • Step 4: Verify the operation of the port-channels Step 1: Shut down the affected ports to avoid loops ! SB9 interface range 0/11 – 0/14 shutdown exit ! Cisco A inter

Summary of the content on the page No. 7

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 7 / 47 channel-group 2 mode on end Step 3: Bring up the affected ports ! SB9 interface range 0/11 – 0/14 no shutdown exit end ! Cisco A interface Po 1 no shutdown end ! Cisco B interface Po 2 no shutdown end Step 4: Verify the operation of the port-channels ! SB9 (SB9) #show port-channel Logical Interface Port-Channel Name Link State Mbr Ports Active Ports ---------------

Summary of the content on the page No. 8

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 8 / 47 2.3 VLANs and Trunks 2.3.1 Introduction Most network administrators want to partition their network into multiple broadcast domains to provide better network stability and better information security. This is implemented using virtual LAN technology (VLANs) which provides multiple virtual LAN segments in one switched network domain as specified in the standard 802.1Q. A number of protocols h

Summary of the content on the page No. 9

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 9 / 47 Step 1: Configure the port-channels Please refer chapter 2 .2 Step 2: Define the VLANs ! SB9 ! Configure the VLANs (VLAN 1 is default and can’t be configured vlan database vlan 10 vlan name 10 VLAN-10 vlan 20 vlan name 20 VLAN-20 exit ! Cisco-A ! Configure the VLANs (VLAN 1 is default and can’t be configured vlan 10 name VLAN-10 ! vlan 20 name VLAN-20 ! vlan 30

Summary of the content on the page No. 10

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 10 / 47 switchport allowed vlan 1,10,20 ! interface range GigabitEthernet0/1 - 2 ! the native vlan 1 is default and normally not displayed in configuration switchport trunk native vlan 1 switchport trunk allowed vlan 1,10,20 switchport trunk encapsulation dot1q switchport mode trunk channel-group 6 mode on ! Step 4: Verify the VLAN trunk ! SB9 (bx6-sb9-a) #show vlan VLAN ID

Summary of the content on the page No. 11

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 11 / 47 2.4 Spanning Tree Protocol 2.4.1 Introduction When the only standard for spanning tree protocols in LANs was STP, as specified in 802.1D, Cisco developed a number of proprietary protocol enhancements. Some of these were adopted into the RSTP standard but others were not. Cisco therefore also modified their RSTP implementation to be compatible with their enhanced STP. Table 3 shows all curr

Summary of the content on the page No. 12

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 12 / 47 therefore important that one native VLAN is defined at both VLAN trunks. Cisco recommends that this native VLAN should be the same for both trunks to the SB9. If the Po1 link or switch A itself fails, the SB9 will change the role of Po2 to “designated” and its state to “forwarding”, after going through the state “learning”. According to the standard this will lead to a failover time of approx

Summary of the content on the page No. 13

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 13 / 47 Rapid Spanning Tree The standard IEEE 802.1w (RSTP) defines only BPDUs in the native VLAN as implemented by the SB9. Cisco also enhanced RSTP to RAPID-PVST which is compatible to RSTP in a number of ways. Figure 5 shows this scenario. Figure 5 : Combining RAPID-PVST and 802.1w All RSTP features are functioning for the native (in this example VLAN1). Since the SB9 implements the stand

Summary of the content on the page No. 14

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 14 / 47 Figure 6 : Combining RAPID-PVST and 802.1w after failure of Po1 Figure 6 shows this scenario. When server 1 now wants to send data to server 2, switch B will send it to switch A via Po3 (as indicated by the MAC address table), which has no connection to the SB9 and will drop the packet. This will not change until either the MAC address table entry times out (after ~300 seconds) or the serve

Summary of the content on the page No. 15

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 15 / 47 2.4.2 Recommended Solution As discussed earlier, there are a number of different combinations of STP protocols that can be selected when integrating SB9 switches into Cisco networks. Although using MSTP between the Cisco and the SB9 would be the best solution, it will not be discussed further in this paper because MSTP is so very unusual in Cisco networks. If you were to run MSTP (802.1s) on

Summary of the content on the page No. 16

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 16 / 47 ! Define the VLANs vlan database vlan 10 vlan name 10 VLAN-10 vlan 20 vlan name 20 VLAN-20 exit ! Definine the port-channels port-channel Po1 interface 1/1 exit interface 0/11 channel-group 1/1 exit interface 0/12 channel-group 1/1 exit port-channel Po2 interface 1/2 exit interface 0/13 channel-group 1/2 exit interface 0/14 channel-group 1/2 exit

Summary of the content on the page No. 17

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 17 / 47 name VLAN-10 ! vlan 20 name VLAN-20 ! Define the port-channels ! interface Port-channel1 switchport trunk encapsulation dot1q switchport mode trunk ! interface Port-channel3 switchport trunk encapsulation dot1q switchport mode trunk ! interface GigabitEthernet0/1 switchport trunk encapsulation dot1q switchport mode trunk channel-group 1 mode on ! interface GigabitEth

Summary of the content on the page No. 18

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 18 / 47 switchport mode trunk channel-group 2 mode on interface GigabitEthernet0/23 switchport trunk encapsulation dot1q switchport mode trunk channel-group 3 mode on ! interface GigabitEthernet0/24 switchport trunk encapsulation dot1q switchport mode trunk channel-group 3 mode on Step 2: Verify the configuration ! Check if STP is diabled @ SB9 ! (bx6-sb9-a) #show spanning-tree

Summary of the content on the page No. 19

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 19 / 47 Po1 Desg FWD 3 128.96 P2p Po3 Desg FWD 3 128.112 P2p VLAN0010 Spanning tree enabled protocol rstp Root ID Priority 10 Address 0017.9470.3200 This bridge is the root Hello Time 1 sec Max Age 11 sec Forward Delay 8 sec Bridge ID Priority 10 (priority 0 sys-id-ext 10)

Summary of the content on the page No. 20

White Paper │ Issue: October 2006 │ Integration of BX600 SB9 Switches in Cisco Networks Page 20 / 47 Hello Time 1 sec Max Age 11 sec Forward Delay 8 sec Aging Time 300 Interface Role Sts Cost Prio.Nbr Type ---------------- ---- --- --------- -------- -------------------------------- Po2 Altn BLK 3 128.640 P2p Po3 Root FWD 3 128.616 P2p VLAN0020 Spanning tree enabled protocol rstp Root ID


Alternative user manuals
# User manual Category Download
1 Fujitsu FBR211 User manual Switch 1
2 Fujitsu FD-1008AT User manual Switch 1
3 Fujitsu Ethernet 2.4 User manual Switch 0
4 Fujitsu FS-1008MT Series User manual Switch 1
5 Fujitsu FD-1016AT User manual Switch 1
6 Fujitsu FS-102AT User manual Switch 3
7 Fujitsu FBR12 User manual Switch 0
8 Fujitsu FS-1004MU User manual Switch 4
9 Fujitsu FS-1004EX User manual Switch 0
10 Fujitsu FS-102ATL User manual Switch 1
11 Fujitsu FS 102ATU User manual Switch 3
12 Fujitsu FS-1004MT User manual Switch 1
13 Fujitsu FS-1008MU User manual Switch 1
14 Fujitsu CONTROL2 BX600 User manual Switch 0
15 Fujitsu FX1008MT User manual Switch 0
16 Sony 4-296-436-11 (2) User manual Switch 0
17 3Com 10/100BASE-TX User manual Switch 61
18 3Com 2226-SFP User manual Switch 688
19 3Com 16985ua.bk User manual Switch 10
20 3Com 10BASE-T User manual Switch 4