IBM 6 MPLS user manual

User manual for the device IBM 6 MPLS

Device: IBM 6 MPLS
Category: Switch
Manufacturer: IBM
Size: 0.24 MB
Added : 5/4/2013
Number of pages: 22
Print the manual

Download

How to use this site?

Our goal is to provide you with a quick access to the content of the user manual for IBM 6 MPLS. Using the online preview, you can quickly view the contents and go to the page where you will find the solution to your problem with IBM 6 MPLS.

For your convenience

If looking through the IBM 6 MPLS user manual directly on this website is not convenient for you, there are two possible solutions:

  • Full Screen Viewing - to easily view the user manual (without downloading it to your computer), you can use full-screen viewing mode. To start viewing the user manual IBM 6 MPLS on full screen, use the button Fullscreen.
  • Downloading to your computer - You can also download the user manual IBM 6 MPLS to your computer and keep it in your files. However, if you do not want to take up too much of your disk space, you can always download it in the future from ManualsBase.
IBM 6 MPLS User manual - Online PDF
Advertisement
« Page 1 of 22 »
Advertisement
Print version

Many people prefer to read the documents not on the screen, but in the printed version. The option to print the manual has also been provided, and you can use it by clicking the link above - Print the manual. You do not have to print the entire manual IBM 6 MPLS but the selected pages only. paper.

Summaries

Below you will find previews of the content of the user manuals presented on the following pages to IBM 6 MPLS. If you want to quickly view the content of pages found on the following pages of the manual, you can use them.

Abstracts of contents
Summary of the content on the page No. 1

Specialized Models User Guide 6 MPLS Model User Guide
6 MPLS Model User Guide
Multi-Protocol Label Switching (MPLS) is a multi-layer switching technology that
uses labels to determine how packets are forwarded through a network. The
first part of this document describes key features of the MPLS specialized model
and the second part focuses on procedures for configuring MPLS in your
network model.
Model Features
This section contains a list of the main features available in the Multi-Protocol

Summary of the content on the page No. 2

Specialized Models User Guide 6 MPLS Model User Guide  MPLS models are implemented based on information available from the following sources. Table 6-2 Reference Documents Model Features Document Traffic Engineering MPLS TE RFC-2702—Requirements for Traffic Engineering Over MPLS FECs RFC-3031—Multiprotocol Label Switching Architecture IGP shortcuts draft-hsmit-mpls-igp-spf-00 Label Switched Paths Dynamic LSPs RFC-3031—Multiprotocol Label Switching Static LSPs Architecture LSP routing OSP

Summary of the content on the page No. 3

Specialized Models User Guide 6 MPLS Model User Guide Node Models The MPLS model suite supports workstation, server, router, and link models from the standard model library. The LER (Label Edge Router) and LSR (Label Switching Router) node models in the MPLS object palette are preconfigured to support MPLS. However, you can configure any of the router models in the standard model library to model LERs and LSRs. Figure 6-1 MPLS Object Palette Model Attributes Global MPLS attributes, which a

Summary of the content on the page No. 4

Specialized Models User Guide 6 MPLS Model User Guide Figure 6-2 Specifying FEC Attributes The FEC Details Table helps define the FEC through a set of match rules, which are combinations of TCP, UDP, and IP header fields. FECs are determined by taking a logical AND of the column settings in a row and by taking a logical OR of each of the rows. In other words, for a packet to qualify for a particular FEC, the IP header fields must satisfy every condition of at least one row of the defined

Summary of the content on the page No. 5

Specialized Models User Guide 6 MPLS Model User Guide  LSP Specification File This attribute indicates whether the network LSPs should be configured according to the text file specified. You can update the text file by clicking OK in the LSP Browser. Updating the file recreates the file based on the current network LSP settings, including LSPs that might not have been in the original file (such as those created manually).  Traffic Trunk Profiles This attribute specifies out-of-profile acti

Summary of the content on the page No. 6

Specialized Models User Guide 6 MPLS Model User Guide Figure 6-5 Mapping EXP Bits to Drop Precedence and PHB Router Attributes Some of the important MPLS Parameters attributes set on routers are described below. Traffic Mapping Configuration This attribute specifies bindings between FECs and LSPs. Each row of the Traffic Mapping Configuration table specifies a distinct traffic engineering (TE) binding. Each TE binding specifies the FEC, traffic trunk, and LSP that is applied to the label o

Summary of the content on the page No. 7

Specialized Models User Guide 6 MPLS Model User Guide When an unlabeled packet arrives at an ingress LER, the following sequence occurs to determine the correct label for the packet: 1) The TE binding is selected based on the packet FEC and the incoming interface. 2) The packet is checked to make sure that its traffic characteristics conform to those specified for the TE binding’s traffic trunk. 3) The packet is labeled for and sent through the primary LSP specified for the TE binding. Figur

Summary of the content on the page No. 8

Specialized Models User Guide 6 MPLS Model User Guide Figure 6-7 Configuring LDP Parameters Simulation Attributes The following simulation attributes are available (Configure/Run Discrete Event Simulation dialog box) when using the MPLS model suite.  CR-LDP Routing—specifies if CR-LDP routing uses CSPF or conventional IGP to determine routes in loosely defined LSPs. The default value is IGP.  CSPF Retry Timer—specifies how long an ingress LER waits after detecting a node or link failure b

Summary of the content on the page No. 9

Specialized Models User Guide 6 MPLS Model User Guide LSP Attributes Some of the important LSP attributes are described below. Most of these attributes can also be configured in the LSP browser, which is described in the next section. Figure 6-8 Configuring an LSP’s Attributes  Directionality—specifies if an LSP is unidirectional or bidirectional. Dynamic LSPs are always unidirectional.  LSP Type—specifies whether the LSP is of type E-LSP or L-LSP. For E-LSP, three experimental bits in t

Summary of the content on the page No. 10

Specialized Models User Guide 6 MPLS Model User Guide Figure 6-10 Recovery Parameters Configuration  Setup Parameters—specifies the duration of the LSP. Figure 6-11 Setup Parameters Configuration  TE Parameters—specifies the traffic engineering constraints used by CR-LDP to find a route through the network. CR-LDP uses Constrained Routing to find the route that is the best fit for the specified constraints. This attribute applies to dynamic LSPs only. Make sure you account for network

Summary of the content on the page No. 11

Specialized Models User Guide 6 MPLS Model User Guide LSP Browser After you create the LSPs in the network, you may want to edit or view the default settings. You do this in the LSP browser, which you can access from the Protocols > MPLS > Browse/Edit LSP Information... menu item. The browser enables you to  Set the hop type of LERs  Set the start and end times for the LSP  Set threshold values for bandwidth, delay, and hop counts in the LSP  Hide some or all of the LSPs from view in the

Summary of the content on the page No. 12

Specialized Models User Guide 6 MPLS Model User Guide Available Statistics To analyze MPLS performance, you can collect path statistics on end-to-end delay, utilization, and the amount of traffic on the LSP. These statistics can be collected on a per-flow or per LSP basis, where flows are individual flows of traffic within an LSP. Figure 6-14 Selecting Statistics to Collect When analyzing your MPLS network, you may also want to look at the routes used for the LSPs. You can do this by selec

Summary of the content on the page No. 13

Specialized Models User Guide 6 MPLS Model User Guide Configuring MPLS in a Network Configuring MPLS in a network is a three-step process. Before you can run a simulation using MPLS, you must 1) Create LSPs in the network topology 2) Create FECs and traffic trunks in the MPLS Configuration object 3) Configure LERs to direct packets into the appropriate LSPs After this basic configuration is in place, you can add QoS/differentiated services (DiffServ) constraints or traffic shaping parameters.

Summary of the content on the page No. 14

Specialized Models User Guide 6 MPLS Model User Guide 2 If you have not assigned IP addresses to all connected interfaces in the network, click the “Perform Auto-Assignment” button. Otherwise, click the “Skip Auto-Assignment” button. ➥ The MPLS Configuration dialog box opens. This box shows all the traffic pairs configured in the network with suggested configuration for LSP configuration. 3 In the MPLS LSP Configuration dialog box, specify which traffic conversation pairs should not generate

Summary of the content on the page No. 15

Specialized Models User Guide 6 MPLS Model User Guide Constrained OSPF (CSPF) is used to implement constraint-based routing of LSPs. You can configure dynamic LSPs to use constraint-based routing in the LSP’s TE Parameters attribute by setting the Bandwidth, Delay, and Hop Count constraints. When using TE constraints, the model must be configured to use (CSPF) as follows:  The CR-LDP simulation attribute must be set to CSPF  The IP routing protocol must be set to OSPF (You can set the dyn

Summary of the content on the page No. 16

Specialized Models User Guide 6 MPLS Model User Guide Creating FECs and Traffic Trunks The traffic engineering bindings that govern how packets are labeled and forwarded in a network use FECs and traffic trunks to classify packets. All of the FECs and traffic trunks in a network are defined in the MPLS configuration object. Procedure 6-4 Creating FECs 1 Place an MPLS configuration object in the project workspace and open its Attributes dialog box. 2 Double-click on the value for FEC Specif

Summary of the content on the page No. 17

Specialized Models User Guide 6 MPLS Model User Guide Creating TE Bindings on LERs After you create the LSPs, FECs, and traffic trunks, you can create TE bindings that govern which packets are sent to which LSPs. You do this in the LER’s MPLS Parameters ➘ Traffic Mapping Configuration attribute. Procedure 6-6 Creating a TE Binding 1 Open the LER’s Traffic Mapping Configuration attribute dialog box (MPLS Parameters ➘ Traffic Mapping Configuration). 2 Add a row to the table. 3 Click in the “

Summary of the content on the page No. 18

Specialized Models User Guide 6 MPLS Model User Guide Exporting LSP Configuration Details for Use in Other Scenarios You can reuse LSPs that you have configured elsewhere by exporting the LSP configuration details to an ASCII file and using this file to create LSPs in the network. Procedure 6-7 Exporting LSP Configuration to an ASCII File 1 From the Protocols > MPLS menu, choose Browse/Edit LSP Information.... ➥ The LSP Browser appears. 2 Click Export to export the LSP configuration for all

Summary of the content on the page No. 19

Specialized Models User Guide 6 MPLS Model User Guide Applying QoS to an MPLS Network Model Differential Services (DiffServ) extensions can be used to apply quality-of-service constraints to your MPLS network model. To do this, you must configure QoS do the following:  Specify traffic classes in the MPLS configuration object  Adjust DSCP settings in the QoS configuration object  Configure queuing schemes and profiles on the affected routers To use different traffic classes in your MPLS netw

Summary of the content on the page No. 20

Specialized Models User Guide 6 MPLS Model User Guide If you change the queuing scheme later, make sure you reset the queuing profile because the order of these steps is important. Figure 6-15 Configuring QoS on an LER Always set the Queuing Scheme before setting the Queuing Profile. SPM-6-20 Modeler/Release 10.0


Alternative user manuals
# User manual Category Download
1 IBM 614 User manual Switch 0
2 IBM 524 User manual Switch 0
3 IBM 8271 User manual Switch 8
4 IBM 24R9718 IB User manual Switch 1
5 IBM 8271 F12 User manual Switch 2
6 IBM 612 User manual Switch 0
7 IBM 12.1(22)EA6 User manual Switch 1
8 IBM 8276 User manual Switch 0
9 IBM 2X16 User manual Switch 0
10 IBM 1X8 User manual Switch 19
11 IBM AA-RWF3A-TE User manual Switch 0
12 IBM AT-FS201 User manual Switch 3
13 IBM 8271 F24 User manual Switch 4
14 IBM AT-FS202SC/FS1 User manual Switch 3
15 IBM AT-FS202SC/FS4 User manual Switch 1
16 Sony 4-296-436-11 (2) User manual Switch 0
17 3Com 10/100BASE-TX User manual Switch 61
18 3Com 2226-SFP User manual Switch 688
19 3Com 16985ua.bk User manual Switch 10
20 3Com 10BASE-T User manual Switch 4