IBM BC-201 user manual

User manual for the device IBM BC-201

Device: IBM BC-201
Category: Network Router
Manufacturer: IBM
Size: 0.58 MB
Added : 8/16/2013
Number of pages: 50
Print the manual

Download

How to use this site?

Our goal is to provide you with a quick access to the content of the user manual for IBM BC-201. Using the online preview, you can quickly view the contents and go to the page where you will find the solution to your problem with IBM BC-201.

For your convenience

If looking through the IBM BC-201 user manual directly on this website is not convenient for you, there are two possible solutions:

  • Full Screen Viewing - to easily view the user manual (without downloading it to your computer), you can use full-screen viewing mode. To start viewing the user manual IBM BC-201 on full screen, use the button Fullscreen.
  • Downloading to your computer - You can also download the user manual IBM BC-201 to your computer and keep it in your files. However, if you do not want to take up too much of your disk space, you can always download it in the future from ManualsBase.
IBM BC-201 User manual - Online PDF
Advertisement
« Page 1 of 50 »
Advertisement
Print version

Many people prefer to read the documents not on the screen, but in the printed version. The option to print the manual has also been provided, and you can use it by clicking the link above - Print the manual. You do not have to print the entire manual IBM BC-201 but the selected pages only. paper.

Summaries

Below you will find previews of the content of the user manuals presented on the following pages to IBM BC-201. If you want to quickly view the content of pages found on the following pages of the manual, you can use them.

Abstracts of contents
Summary of the content on the page No. 1


Overview of IBM Networking
The IBM networking technologies described in this publication can be categorized as network-related
or host-related technologies. The IBM Networking section of the Cisco IOS Bridging and IBM
Networking Configuration Guide discusses the following network-related software components:
• RSRB, page 202
� DLSw+, page 204
� STUN and BSTUN, page 211
� LLC2 and SDLC Parameters, page 215
� IBM Network Media Translation, page 217
� SNA FRAS, page 223
� NCIA, page 226
� ALPS,

Summary of the content on the page No. 2

Overview of IBM Networking RSRB Note All commands supported on the Cisco 7500 series routers are also supported on the Cisco 7000 series routers. RSRB In contrast to Source-Route Bridging (SRB), which involves bridging between Token Ring media only, RSRB is a Cisco technique for connecting Token Ring networks over non-Token Ring network segments. (DLSw+ is the Cisco strategic method for providing this function.) The Cisco RSRB software implementation includes the following features: � Provi

Summary of the content on the page No. 3

Overview of IBM Networking RSRB Configuration Considerations Use IP encapsulation only over a TCP connection within complex meshed networks to support connections between peers that are separated by multiple hops and can potentially use multiple paths, and where performance is not an issue. Use direct encapsulation in point-to-point connections. In a point-to-point configuration, using TCP adds unnecessary processing overhead. Multiple peer types, however, can be combined to in a single ro

Summary of the content on the page No. 4

Overview of IBM Networking DLSw+ Note As previously stated, local acknowledgment for LLC2 is meant only for extreme cases in which communication is not possible otherwise. Because the router must maintain a full LLC2 session, the number of simultaneous sessions it can support before performance degrades depends on the mix of other protocols and their loads. The routers at each end of the LLC2 session execute the full LLC2 protocol, which can result in some overhead. The decision to turn on

Summary of the content on the page No. 5

Overview of IBM Networking DLSw+ This section contains a brief overview of DLSw+: � DLSw Standard, page 205 � DLSw Version 2 Standard, page 205 � DLSw+ Features, page 206 DLSw Standard The DLSw standard, documented in RFC 1795, defines the switch-to-switch protocol between DLSw routers. The standard also defines a mechanism to terminate data-link control connections locally and multiplex the traffic from the data-link control connections to a TCP connection. The standard always calls for th

Summary of the content on the page No. 6

Overview of IBM Networking DLSw+ IP Multicast Multicast service avoids duplication and excessive bandwidth of broadcast traffic because it replicates and propagates messages to its multicast members only as necessary. It reduces the amount of network overhead in the following ways: � Avoids the need to maintain TCP Switch-to-Switch Protocol (SSP) connections between two DLSw peers when no circuits are available � Ensures that each broadcast results in only a single explorer over every lin

Summary of the content on the page No. 7

Overview of IBM Networking DLSw+ This section contains information on the following topics related to DLSw+ features: � Local Acknowledgment, page 207 � Notes on Using LLC2 Local Acknowledgment, page 209 � DLSw+ Support for Other SNA Features, page 210 DLSw+ is fully compatible with any vendor’s RFC 1795 implementation and the following features are available when both peers are using DLSw+: � Peer groups and border peers � Backup peers � Promiscuous and on-demand peers � Explorer firewalls a

Summary of the content on the page No. 8

Overview of IBM Networking DLSw+ Figure 86 illustrates an LLC2 session in which a 37x5 on a LAN segment communicates with a 3x74 on a different LAN segment separated via a wide-area backbone network. Frames are transported between Router A and Router B by means of DLSw+. However, the LLC2 session between the 37x5 and the 3x74 is still end-to-end; that is, every frame generated by the 37x5 traverses the backbone network to the 3x74, and the 3x74, on receipt of the frame, acknowledges it. Fi

Summary of the content on the page No. 9

Overview of IBM Networking DLSw+ 3x74 operates as if the acknowledgments it receives are from the 37x5. Router B looks like the 3x74 to 37x5. Because the frames do not have to travel the WAN backbone networks to be acknowledged, but are locally acknowledged by routers, the end machines do not time out, resulting in no loss of sessions. Enabling local acknowledgment for LLC2 has the following advantages: � Local acknowledgment for LLC2 solves the T1 timer problem without having to change any

Summary of the content on the page No. 10

Overview of IBM Networking DLSw+ If you are using NetBIOS applications, note that there are two NetBIOS timers—one at the link level and one at the next higher level. Local acknowledgment for LLC2 is designed to solve link timeouts only. If you are experiencing NetBIOS session timeouts, you have two options: � Experiment with increasing your NetBIOS timers and decreasing your maximum NetBIOS frame size. � Avoid using NetBIOS applications on slow serial lines. Note By default, the Cisco IOS

Summary of the content on the page No. 11

Overview of IBM Networking STUN and BSTUN Figure 88 VDLC Interaction with Higher-Layer Protocols DLSw+ Data-link users SNASw CLSI Token Data-link controls VDLC Ethernet Ring The higher-layer protocols make no distinction between the VDLC and any other data-link control, but they do identify the VDLC as a destination. In the example shown in , SNASw has two ports: a physical port for Token Ring and a logical (virtual) port for the VDLC. In the case of the SNASw VDLC port, when you define the

Summary of the content on the page No. 12

Overview of IBM Networking STUN and BSTUN Figure 89 Comparison of STUN in Passthrough Mode and Local Acknowledgment Mode 37x5 3x74 WAN IBM 1 IBM1 SDLC session SNA session TCP session 37x5 WAN 3x74 IBM 1 IBM 2 SDLC session SDLC session SNA session Note To enable STUN local acknowledgment, you first enable the routers for STUN and configure them to appear on the network as primary or secondary SDLC nodes. TCP/IP encapsulation must be enabled. The Cisco STUN local acknowledgment feature also pr

Summary of the content on the page No. 13

Overview of IBM Networking STUN and BSTUN � Allows networks with IBM mainframes and communications controllers to share data using Cisco routers and existing network links. As an SDLC function, STUN fully supports the IBM SNA and allows IBM SDLC frames to be sent across the network media and shared serial links. illustrates a typical network configuration without STUN and the same network configured with STUN. � Encapsulates SDLC frame traffic packets and routes them over any of the suppor

Summary of the content on the page No. 14

Overview of IBM Networking STUN and BSTUN Figure 90 shows the difference between an IBM network with STUN and one without STUN. Figure 90 IBM Network Configuration without STUN and with STUN Workstation IBM mainframe Ethernet 37x5 Local site Without STUN T1 serial link 3x74 Remote site Ethernet IBM 3x78 terminals Workstation IBM mainframe 37x5 Workstation Local Ethernet site With STUN T1 serial link Remote Ethernet site Workstation 3x74 IBM 3x78 terminals Cisco IOS Bridging and IBM Network

Summary of the content on the page No. 15

Overview of IBM Networking LLC2 and SDLC Parameters BSTUN Networks The Bisync feature enables your Cisco 2500, 3600, 4000, 4500, 4700, and 7200 series router to support devices that use the Bisync data-link protocol. This protocol enables enterprises to transport Bisync traffic over the same network that supports their SNA and multiprotocol traffic, eliminating the need for separate Bisync facilities. At the access router, traffic from the attached Bisync device is encapsulated in IP. The B

Summary of the content on the page No. 16

Overview of IBM Networking LLC2 and SDLC Parameters modifying the control field parameters, you can determine the number of acknowledgments sent for frames received and the level of polling used to determine available stations. In this manner, you can set the amount of resources used for frame checking and optimize the network load. SDLC is used as the primary SNA link-layer protocol for WAN links. SDLC defines two types of network nodes: primary and secondary. Primary nodes poll secondary

Summary of the content on the page No. 17

Overview of IBM Networking IBM Network Media Translation The Cisco Implementation of SDLC The Cisco SDLC implementation supports the following features: � Frame Relay Access Support (FRAS) With FRAS, a router functions as a Frame Relay Access Device (FRAD) for SDLC, Token Ring, and Ethernet-attached devices over a Frame Relay Boundary Network Node (BNN) link. Frame Relay access support is described in the chapter “Configuring SNA Frame Relay Access Support.” � SDLLC media translation The SDL

Summary of the content on the page No. 18

Overview of IBM Networking IBM Network Media Translation Figure 91 illustrates how SDLLC provides data link layer support for SNA communication. Figure 91 SNA Data Link Layer Support SNA Upper layers Data link layer SDLC SDLLC LLC LNX QLLC X.25 SDLLC Media Translation Features The SDLLC feature allows a PU 4, PU 2.1, or PU 2 to communicate with a PU 2 SDLC device as follows: � SDLLC with direct connection—A 37x5 front-end processor (FEP) on a Token Ring and the 3x74 cluster controller connect

Summary of the content on the page No. 19

Overview of IBM Networking IBM Network Media Translation As part of its virtual telecommunications access method (VTAM) configuration, the IBM node on the Token Ring has knowledge of the SDLLC VTRA of the serial device with which it communicates. The SDLC VTRA and the SDLLC virtual ring number are a part of the SDLLC configuration for the router’s serial interface. When the Token Ring host sends out explorer packets with the SDLLC VTRA as the destination address in the MAC headers, the rou

Summary of the content on the page No. 20

Overview of IBM Networking IBM Network Media Translation QLLC Conversion Qualified Logical Link Control (QLLC) is a data link protocol defined by IBM that allows SNA data to be transported across X.25 networks. (Although IBM has defined other protocols for transporting SNA traffic over an X.25 network, QLLC is the most widely used.) Figure 92 illustrates how QLLC conversion provides data link layer support for SNA communication. Figure 92 SNA Data Link Layer Support SNA Upper layers Data li


Alternative user manuals
# User manual Category Download
1 IBM 51 User manual Network Router 1
2 IBM Cisco MDS 9506 User manual Network Router 1
3 IBM AS/400E User manual Network Router 1
4 IBM AS/400 User manual Network Router 294
5 IBM NETCOOL 4.3-W User manual Network Router 3
6 IBM Dual AMD OpteronTM SFF Barebone ZMAXdp User manual Network Router 0
7 IBM NFS/DFS Secure Gateway User manual Network Router 0
8 IBM Enterprise Console User manual Network Router 0
9 IBM Netcool/OMNIbus Probe for Nortel CNM User manual Network Router 8
10 IBM SAN24B-R User manual Network Router 12
11 IBM 802.11g Wireless Broadband Router WRT-410 User manual Network Router 2
12 IBM ADSL Bridge/ Router Heritage User manual Network Router 0
13 IBM PSB Form Factor Board SAGP-845EV User manual Network Router 1
14 IBM SC30-3865-04 User manual Network Router 0
15 IBM SY27-0345-06 User manual Network Router 2
16 Sony BKS-R3202/R3210/R3220 User manual Network Router 77
17 Sony DVS-V3232B/V3232M User manual Network Router 3
18 Sony BVS-V3232 User manual Network Router 8
19 Sony DMX-WL1 User manual Network Router 6
20 Sony BVS-A3232 User manual Network Router 6