Philips Electromagnetic Lamp user manual

User manual for the device Philips Electromagnetic Lamp

Device: Philips Electromagnetic Lamp
Category: Indoor Furnishings
Manufacturer: Philips
Size: 0.67 MB
Added : 10/1/2013
Number of pages: 48
Print the manual

Download

How to use this site?

Our goal is to provide you with a quick access to the content of the user manual for Philips Electromagnetic Lamp. Using the online preview, you can quickly view the contents and go to the page where you will find the solution to your problem with Philips Electromagnetic Lamp.

For your convenience

If looking through the Philips Electromagnetic Lamp user manual directly on this website is not convenient for you, there are two possible solutions:

  • Full Screen Viewing - to easily view the user manual (without downloading it to your computer), you can use full-screen viewing mode. To start viewing the user manual Philips Electromagnetic Lamp on full screen, use the button Fullscreen.
  • Downloading to your computer - You can also download the user manual Philips Electromagnetic Lamp to your computer and keep it in your files. However, if you do not want to take up too much of your disk space, you can always download it in the future from ManualsBase.
Philips Electromagnetic Lamp User manual - Online PDF
Advertisement
« Page 1 of 48 »
Advertisement
Print version

Many people prefer to read the documents not on the screen, but in the printed version. The option to print the manual has also been provided, and you can use it by clicking the link above - Print the manual. You do not have to print the entire manual Philips Electromagnetic Lamp but the selected pages only. paper.

Summaries

Below you will find previews of the content of the user manuals presented on the following pages to Philips Electromagnetic Lamp. If you want to quickly view the content of pages found on the following pages of the manual, you can use them.

Abstracts of contents
Summary of the content on the page No. 1

ELECTROMAGNETIC LAMP
5
CONTROL GEAR
BALLASTS
51
11 Main ballast functions
In chapter 2.1 of this Guide: General aspects, section 2.1: Main ballast
functions, the main functions of ballasts have been described.The term
‘ballasts’ is generally reserved for current limiting devices, including
resistors, choke coils and (autoleak) transformers. Other pieces of
auxiliary equipment are compensating capacitors, filter coils and
starters or ignitors. Some systems use an additional series capacitor
for s

Summary of the content on the page No. 2

1.3 Ignition and re-ignition 5 In the case of electromagnetic control gear, a combination of preheating and a high ignition peak is obtained by using a normal choke ballast and a preheat starter or an electronic ignitor. Energy is supplied to the discharge in the form of electrons.The lamp current, just like the mains voltage, is sinusoidal, with a frequency of 50 or 60 Hz. If the energy flow is zero (at lamp current reversal) the lamp stops burning and in theory would have to be re-ignited. Th

Summary of the content on the page No. 3

1.4 Types of ballasts 5 that the no-load voltage need be no more than 25 to 30 per cent higher than the lamp voltage.This is also the proportion of the power dissipated by the ballast compared to the total circuit power. ‘TL’ R + Fig. 103. Schematic diagram of a - fluorescent lamp operated on a resistor ballast in a DC circuit. 2 Capacitor ballasts A capacitor used as a ballast causes only very little losses, but cannot be used by itself, as this would give rise to very high peaks in the lamp c

Summary of the content on the page No. 4

1.4 Types of ballasts 5 The most important value for stabilisation is the ballast impedance. It is expressed as voltage/current ratio in ohm (Ω) and defined for a certain mains voltage, mains frequency and calibration current (normally the nominal lamp current). Chokes can be used for virtually all discharge lamps, provided that one condition is fulfilled: the mains voltage should be about twice the arc voltage of the lamp. If the mains voltage is too low, another type of circuit should be used

Summary of the content on the page No. 5

1.5 Ballast specification and marking 5 - rated voltage, capacitance and tolerance of separate series capacitor. In the documentation can be found: - weight, - overall and mounting dimensions, - power factor (l , P.F. or cos j ), - compensating capacitor value and voltage for l = 0.85 or 0.9, - mains current nominal and during running-up, both with and without power factor correction, - watt losses (normally in cold condition), - description of version, e.g. open impregnated,‘plastic’ encapsula

Summary of the content on the page No. 6

1.6 Maximum coil temperature t and ΔT 5 w Another value marked on the ballast is the coil temperature rise Δt. This is the difference between the absolute coil temperature and the ambient temperature in standard conditions and is measured by a method specified in IEC Publ. 920 (EN 60920). Common values for Δt are from 50 to 70 degrees in steps of 5 degrees. The coil temperature rise is measured by measuring the ohmic resistance of the cold and warm copper coil and using the formula: Δt = {(R -

Summary of the content on the page No. 7

1.7 Watt losses 5 As in some applications the power consumption is of prime importance, there are low-loss ballasts for the major lamp types ‘TL’D 18, 36 and 58 W ( BTA**L31LW).The 18 and 36 W LW ballasts are bigger than the standard types, resulting in lower ballast temperatures and 25 to 30 per cent less ballast watt losses. Due to practical restrictions the BTA 58L31LW type could not be made bigger.The 15 per cent lower ballast losses are the result of a better iron lamination quality, whil

Summary of the content on the page No. 8

2.2 Starter types 5 starting process again until the lamp ignites. If the lamp will not ignite (end of life) the starter will continue producing peaks (flickering) until the mains voltage is switched off or until the electrodes of the glow- switch starter stick together. In the latter case the short-circuit current is continuously running through the lamp electrodes, which can be seen at the glowing lamp ends. Fig. 106. Working principle of a glow- discharge starter circuit. 1. The heat from th

Summary of the content on the page No. 9

2.2 Starter types 5 2 Electronic starters In principle the electronic starter or ignitor is working in the same manner as the glow-switch starter. But now the switching does not come from bi-metallic electrodes, but from a triac. The electronic circuit in the starter gives a well-defined preheat time (1.7 sec) for the lamp electrodes and, after the preheat, a well-defined peak voltage, which ensures optimum lamp ignition.The heart of the electronic starter is a customized integrated circuit, co

Summary of the content on the page No. 10

3.1 Components 5 Information about lamps can be found in the lamp documentation, where also the type of lampholder or lamp cap is mentioned. Be sure to use the appropriate lampholder, as there are many different types. Lamp types with different wattage are in principle not interchangeable in a certain circuit, even though they may have the same lamp cap and do fit in the same lampholder. In some lamp types the glow-switch starter is incorporated in the lamp base (2-pin version PL). In the SL fa

Summary of the content on the page No. 11

3.2 Capacitors 5 To do things well, some aspects have to be considered: - First of all, capacitors for discharge lamp circuits have to fulfil the requirements as specified in IEC publications 1048 and 1049.The use of PCB (chlorinated biphenyl) is forbidden. - It is recommended that capacitors which have some approval marks, such as VDE, KEMA, DEMKO or ENEC be used. - Normally every lamp circuit is compensated by its own capacitance. Only in some special cases group or central compensation for m

Summary of the content on the page No. 12

3.2 Capacitors 5 Capacitors for lighting applications must have a discharge resistor connected across the terminals to ensure that the capacitor voltage is less than 50 V within 1 minute after switching off the mains power. In special cases the voltage level must be 35 V within 1 second, see IEC 598-8.2.7. Filter coils 33 In some countries, including Belgium, the Netherlands and France, the electric distribution network is used for transmitting messages under responsibility of the local energy

Summary of the content on the page No. 13

3.3 Filter coils 5 There are other advantages to be gained from employing filter coils. The parallel capacitor can cause troublesome switching phenomena to occur, which can give rise to very large current surges.Although these surges are of only very short duration (a few milliseconds), they are nevertheless sufficient to cause switching relays to stick or circuit breakers to switch off.The filter coil serves to prevent this problem by damping the very short, high amplitude pulses in the curren

Summary of the content on the page No. 14

I sin j l 3.4 Power factor correction 5 V m I V l φ Fig. 111. Lamp current (I ), lamp voltage (V ) l l and mains voltage (V ). m This can be seen in Fig. 111, which is showing the lamp current I , the l lamp voltage V (both in phase with each other) and the sinus form of l the mains voltage V . m The power factor of the circuit can be calculated by dividing the total wattage by the product of mains voltage and current. In formula: P.F. = (W + W )/(V .I ) (1) l b m m Without the para

Summary of the content on the page No. 15

I cap I sin φ l 3.4 Power factor correction 5 ballast, the capacitor current is leading 90 electrical degrees to the capacitor voltage (which is the mains voltage). So the capacitor current has the opposite direction of I sin j (see Fig. 114). l V V b m I cos φ l φ Fig. 114. Compensated circuit. I V l l Maximum compensation is achieved when the current through the capacitor I = I sin j ; then the power factor is 1.This is purely c l theoretical, as the vector diagram is only valid for the fun

Summary of the content on the page No. 16

3.4 Power factor correction 5 L2 C L1 ‘TL’ ‘TL’ SS 1 2 Fig. 115. Duo-circuit with the capacitor 0 placed in series with one of the ballasts. The series capacitor has an impedance which is twice the normal ballast impedance, resulting in a power factor of approx. 0.5 capacitive for one branch.Together with the power factor of 0.5 inductive for the other branch, the total power factor of the two branches is approx. 0.95. With a normal 230 V supply, the voltage across the capacitor is about 400

Summary of the content on the page No. 17

3.4 Power factor correction 5 Mains voltage 90 % 100 % 110 % Circuit Ind. Cap. Ind. Cap. Ind. Cap. Z ballast (Ω) 440 440 400 400 360 360 Z capacitor (Ω) 800 800 800 Z result (Ω) 440 360 400 400 360 440 Therefore the behaviour of the inductive and capacitive branch of a duo-circuit is different at mains voltage deviations and deviations of the ambient temperature.This can be seen rather well in a duo-luminaire. V (V) ballast 1 Z = 165 = 360 Ω ____ 1 0,458 2 Z = 150 = 400 Ω ____ 1 0,375 3

Summary of the content on the page No. 18

3.5 Series connection of lamps 5 Parallel connection of two lamps on a common ballast is impossible because of the negative characteristic of the fluorescent lamp.All the current would flow through the lamp with the lower arc voltage. Moreover, once the first lamp is ignited the lamp voltage is too low for the ignitor of the second lamp to ignite this lamp. 36 Neutral interruption and resonance Normally each lamp circuit has its own compensating capacitor. In this way every luminaire can be sw

Summary of the content on the page No. 19

3.6 Neutral interruption and resonance 5 I R L L 1 1 I I total R R 1 V 230V 1000 1 1000 N 400V I R R R R R 2 3 4 5 1000 Fig. 119. The consequences of V 230V 2 250 interrupted neutral in a phase/neutral each network. L L 2 2 4 I R This makes 1000 + 250 = 1250 Ω. So the current will be 400 / 1250 = 0.32 A. The voltage across R1 will be 0.32 . 1000 = 320 V (V = I . R), so the power in R1 will be 320 . 0.32 = 102 W. The voltage across the four parallel resistors is 0.32 . 250 = 8

Summary of the content on the page No. 20

3.6 Neutral interruption and resonance 5 B ‘TL’D S B C ‘TL’D S Fig. 121. Resonance in a star-network. N 37 Electrical diagrams B L V C La 1) One lamp, inductive or compensated with electronic or glow-switch starter ‘TL’, ‘TL’D, ‘TL’E, ‘TL’U, PL-L, PL-T, PL-T(S)(C) 4-pins N B L V C La V 2) Two lamps, inductive or compensated with electronic or glow-switch starter La ‘TL’, ‘TL’D, PL-L N B L C La 3) One lamp, inductive or compensated without starter PL-S, PL-C, PL-T (starter incorporated) N 126


Alternative user manuals
# User manual Category Download
1 Philips 12499ECO User manual Indoor Furnishings 0
2 Philips 207530 User manual Indoor Furnishings 1
3 Philips 131623 User manual Indoor Furnishings 1
4 Philips 12972ECO User manual Indoor Furnishings 0
5 Philips 12961ECO User manual Indoor Furnishings 0
6 Philips 12814ECO User manual Indoor Furnishings 0
7 Philips 207548 User manual Indoor Furnishings 0
8 Philips 22AV3100 User manual Indoor Furnishings 0
9 Philips 22AV3200 User manual Indoor Furnishings 0
10 Philips 232504 User manual Indoor Furnishings 0
11 Philips 228114 User manual Indoor Furnishings 0
12 Philips 232520 User manual Indoor Furnishings 0
13 Philips 232496 User manual Indoor Furnishings 0
14 Philips 232512 User manual Indoor Furnishings 0
15 Philips 232801 User manual Indoor Furnishings 0
16 Sony User manual Indoor Furnishings 1
17 Sony XL-2000K User manual Indoor Furnishings 1
18 Sony SU-32FS2 User manual Indoor Furnishings 3
19 Sony PSS-610 User manual Indoor Furnishings 10
20 Sony HVL-LBP User manual Indoor Furnishings 8