ملخص المحتوى في الصفحة رقم 1
FIX/SCI/ENG: Indicates the notation used to display a value. Integral calculation (Simpson’s rule):
Priority Levels in Calculation Fraction Calculations
ENGLISH
Operations are performed according to the following priority: Arithmetic operations and memory calculations can be performed
DEG/RAD/GRAD: Indicates angular units.
b – a
1
——
S=—h{ƒ(a)+4{ƒ(a+h)+ƒ(a+3h)+······+ƒ(a+(N–1)h)} h=
SCIENTIFIC CALCULATOR
Q Fractions (1 4, etc.) W ∠, engineering prefixes E Functions using fractions, and convers
ملخص المحتوى في الصفحة رقم 2
FIX/SCI/ENG: Indicates the notation used to display a value. Integral calculation (Simpson’s rule): Priority Levels in Calculation Fraction Calculations ENGLISH Operations are performed according to the following priority: Arithmetic operations and memory calculations can be performed DEG/RAD/GRAD: Indicates angular units. b – a 1 —— S=—h{ƒ(a)+4{ƒ(a+h)+ƒ(a+3h)+······+ƒ(a+(N–1)h)} h= SCIENTIFIC CALCULATOR Q Fractions (1 4, etc.) W ∠, engineering prefixes E Functions using fractions, and convers
ملخص المحتوى في الصفحة رقم 3
FIX/SCI/ENG: Indicates the notation used to display a value. Integral calculation (Simpson’s rule): Priority Levels in Calculation Fraction Calculations ENGLISH Operations are performed according to the following priority: Arithmetic operations and memory calculations can be performed DEG/RAD/GRAD: Indicates angular units. b – a 1 —— S=—h{ƒ(a)+4{ƒ(a+h)+ƒ(a+3h)+······+ƒ(a+(N–1)h)} h= SCIENTIFIC CALCULATOR Q Fractions (1 4, etc.) W ∠, engineering prefixes E Functions using fractions, and convers
ملخص المحتوى في الصفحة رقم 4
FIX/SCI/ENG: Indicates the notation used to display a value. Integral calculation (Simpson’s rule): Priority Levels in Calculation Fraction Calculations ENGLISH Operations are performed according to the following priority: Arithmetic operations and memory calculations can be performed DEG/RAD/GRAD: Indicates angular units. b – a 1 —— S=—h{ƒ(a)+4{ƒ(a+h)+ƒ(a+3h)+······+ƒ(a+(N–1)h)} h= SCIENTIFIC CALCULATOR Q Fractions (1 4, etc.) W ∠, engineering prefixes E Functions using fractions, and convers
ملخص المحتوى في الصفحة رقم 5
•• •• •• •• KRO;:?≥∆˚¬ ≤ EL-520W 2FEC– ªOM@ì 2FEC - (cosh 1.5 + ª(hu 1.5 +h H 2 2C9E=(A) 2C9E ; 34E. sinh 1.5) = s 1.5 )L= 20.08553692 ª 8 * 2 OM 16. m0 +)2000– 2000 - 3 2 24÷(8×2)= 24 /KM= 1.5 f(x) = x –3x +2 Kˆ™ 3 - 3 K CALCULATION EXAMPLES 5 @Ht( 5 H –1 1901=(B) 1901 ; 6FF. tanh — = (8×2)×5= KM* 5 = 80. ˆL+ 2 @≤ ANWENDUNGSBEISPIELE 7 / 7 )= 0.895879734 H (C) RM A4d. x = –1 1 ±® –2. ªOM 0. EXEMPLES DE CALCUL ln 20 = I 20 = 2.995732274 x = –0.5 @≤ 0.5 ±® 1.125 1011 AND ª@ê 1011 † $150×3:M1 150
ملخص المحتوى في الصفحة رقم 6
•• •• •• •• KRO;:?≥∆˚¬ ≤ EL-520W 2FEC– ªOM@ì 2FEC - (cosh 1.5 + ª(hu 1.5 +h H 2 2C9E=(A) 2C9E ; 34E. sinh 1.5) = s 1.5 )L= 20.08553692 ª 8 * 2 OM 16. m0 +)2000– 2000 - 3 2 24÷(8×2)= 24 /KM= 1.5 f(x) = x –3x +2 Kˆ™ 3 - 3 K CALCULATION EXAMPLES 5 @Ht( 5 H –1 1901=(B) 1901 ; 6FF. tanh — = (8×2)×5= KM* 5 = 80. ˆL+ 2 @≤ ANWENDUNGSBEISPIELE 7 / 7 )= 0.895879734 H (C) RM A4d. x = –1 1 ±® –2. ªOM 0. EXEMPLES DE CALCUL ln 20 = I 20 = 2.995732274 x = –0.5 @≤ 0.5 ±® 1.125 1011 AND ª@ê 1011 † $150×3:M1 150
ملخص المحتوى في الصفحة رقم 7
•• •• •• •• KRO;:?≥∆˚¬ ≤ EL-520W 2FEC– ªOM@ì 2FEC - (cosh 1.5 + ª(hu 1.5 +h H 2 2C9E=(A) 2C9E ; 34E. sinh 1.5) = s 1.5 )L= 20.08553692 ª 8 * 2 OM 16. m0 +)2000– 2000 - 3 2 24÷(8×2)= 24 /KM= 1.5 f(x) = x –3x +2 Kˆ™ 3 - 3 K CALCULATION EXAMPLES 5 @Ht( 5 H –1 1901=(B) 1901 ; 6FF. tanh — = (8×2)×5= KM* 5 = 80. ˆL+ 2 @≤ ANWENDUNGSBEISPIELE 7 / 7 )= 0.895879734 H (C) RM A4d. x = –1 1 ±® –2. ªOM 0. EXEMPLES DE CALCUL ln 20 = I 20 = 2.995732274 x = –0.5 @≤ 0.5 ±® 1.125 1011 AND ª@ê 1011 † $150×3:M1 150
ملخص المحتوى في الصفحة رقم 8
•• •• •• •• KRO;:?≥∆˚¬ ≤ EL-520W 2FEC– ªOM@ì 2FEC - (cosh 1.5 + ª(hu 1.5 +h H 2 2C9E=(A) 2C9E ; 34E. sinh 1.5) = s 1.5 )L= 20.08553692 ª 8 * 2 OM 16. m0 +)2000– 2000 - 3 2 24÷(8×2)= 24 /KM= 1.5 f(x) = x –3x +2 Kˆ™ 3 - 3 K CALCULATION EXAMPLES 5 @Ht( 5 H –1 1901=(B) 1901 ; 6FF. tanh — = (8×2)×5= KM* 5 = 80. ˆL+ 2 @≤ ANWENDUNGSBEISPIELE 7 / 7 )= 0.895879734 H (C) RM A4d. x = –1 1 ±® –2. ªOM 0. EXEMPLES DE CALCUL ln 20 = I 20 = 2.995732274 x = –0.5 @≤ 0.5 ±® 1.125 1011 AND ª@ê 1011 † $150×3:M1 150